7(3): 01-02(2021)

(Published by Research Trend, Website: www.biobulletin.com)

issn no. (print): 2454-7913 ISSN NO. (Online): 2454-7921

C₄ Photosynthesis

Pigaud Surna^{1*}, Asud Wei² and Hong Wang³

¹Department of Petroleum Technology, ITM University Gwalior (M.P.), India ²Department of Zoology, Govt. Higher Secondary School, Litter (J&K), India ³Department of Environmental Science, Govt. Degree College, Bijbehara (J&K), India

(Corresponding author: Pigaud Surna)

(Published by Research Trend, Website: www.biobulletin.com) (Received 13 August 2021; Accepted 27 August 2021)

EDITORIAL NOTE

Compared to C₃ systems, C₄ systems generally maintain a lower tiny guide. C4 syndrome has been widely studied in evolution C4. Although the stomata have been designed for a long time belonging to the C₄ syndrome, it is not yet clear for the stomatic evolution along the road to C₄. The stomatal model was examined in gender up an evolutionary C₄ model contains species in different evolutionary phases of C_3 to the photosynthesis, which can minimize spurious relations. Comparative methods, transgenic experiments and seminnevitre analysis have been carried out to test the molecular bases are the basis of the anatomical difference. The evolution of C₃ to species C₄ Intermediate species were accompanied by a rather acute step by step trend in the characteristics of the stomata. The initial alteration verified in type II and the drastic change in species similar to C4. Stays in the evolution of the C₄ have always evolved towards a lower and wider direction. SD dominated maximum stomata conductance throughout the evolutionary process C4. Evolution C4 selected the reduction of the expression to decrease G_{smax}. Our analysis stressed the characteristics of the stomata of the current developing model, and provided road information, the mechanism and role of states that evolve along the path to C₄. It is believed that plants C₄ are gradually evolved C₃ intermediate forms that have been found in some species. The intermediate species with characteristics between C₃ and C₄ was confirmed as a true intermediate

phase in the modeling of phylogenetics biochemistry, which, in accordance with experimental studies described above, above all in the kind of sheath. In particular more intermediate species that completely cover the different phases and phases of the C₄, C₃ IE, C₃C₄ type I, C₃C₄ Type II, C₄ Like and C₄. The large number of species of intermediate flavor and evapaclating is the youngest kind of evolution C4, suggests that the evolution of the C₄ continues experimentation. A close relationship between flavors can minimize the impact of non-local rates, generally manifests itself in its similar morphologies and a habitat environment. These causes the sex of evapaclating to the preferred object for research on the evolutionary process C_3 to C_4 , and in fact it was a large number of studies on this physiology, structure, biochemistry and molecule. The current evolutionary model is based mainly on these studies in flavors, which carry out events such as the main model system include evolution C4. The current process of evolution C₄ implies many characteristics.

In summary, the beam sheath cells and the density of the vein begin to be developed before the start of metabolism C_4 . Glycine Decarbyylase (GDC) is transferred from Mesophill cells to the pod cells of a package, therefore, the photorespiration acts as a modest CO_2 concentration mechanism and promotes the formation of Metabolism C_4 .

Since stomatal development is controlled by a molecular signaling network composed of many interacting components, in theory, any genes

controlling stomatal development could be potentially selected to alter stomatal pattern affecting g_{smax} during the emergence of C_4 photosynthesis. In fact, changing the stomata pattern under different conditions does indeed choose different molecular pathways.